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Abstract. The task of synchronising autonomous agents is solved by

a networked controller that steers the agents towards a common tra-

jectory. The Internal-Reference Principle says that the agents can be

synchronised by an appropriate networked controller only if their dy-

namics intersect. This intersection acts as the virtual reference system

and generates the synchronous trajectory. The report shows two ways

to find the initial state of the virtual reference system in dependence

upon the initial agent states.
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1 Introduction

A synchronised multi-agent system satisfies the following two requirements:

1. Synchronous behaviour: For specific initial states of the agents, all outputs

yi(t) follow a common trajectory ys(t)

y1(t) = y2(t) = ... = yN(t) = ys(t) t ≥ 0, (1)

which is called the synchronous trajectory.

2. Asymptotic synchronisation: For all other initial states, the networked con-

troller asymptotically synchronises the agents:

lim
t→∞

‖yi(t)− ys(t)‖ = 0, i = 1, 2, ..., N. (2)

The synchronous trajectory ys(t) is generated by the virtual reference system in-

troduced in Section 2. The initial state xs0 of this system depends upon the initial

states xi0, (i = 1, 2, .., N) of all agents. This report deals with the problem to de-

termine xs0. For comparison, this initial state is obtained for consensus problems of

integrator systems as

xs0 =

N∑

i=1

ŵixi0

(eqn. (3.20) on p. 72 in [1]) and for the synchronisation of identical agents as

xs0 =
N∑

i=1

ŵixi0

(eqn. (4.34) on p. 143) with ŵi denoting the i-th element of the left eigenvector wT

of the Laplacian matrix L for the vanishing eigenvalue.
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Fig. 1: Multi-agent system with dynamical networked controller

The report refers directly to the results in [1] by using the enumeration of the

equations and theorems of the textbook (e. g. Theorem 4.5 or eqn. (4.116)).
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2 Models

2.1 Agents with individual dynamics

The agents Pi have linear dynamics with individual parameters

Pi :

{
ẋi(t) = Aixi(t) + biui(t), xi(0) = xi0

yi(t) = cTi xi(t)
(3)

(i = 1, 2, ..., N) with

• ui(t) – scalar input,

• xi(t) – ni-dimensional state vector,

• yi(t) – scalar output.

They are assumed to be completely controllable and completely observable.

The virtual reference system Σs is an autonomous system

Σs :

{
ẋs(t) = Asxs(t), xs(0) = xs0

ys(t) = cTs xs(t)
(4)

with the ns-dimensional state xs(t) and the scalar output ys(t). It parameterises the

set of synchronous trajectories ys(t) with respect to the initial state xs0:

Ys =
{

cTs e
Astxs0 |xs0 ∈ R

ns

}

.

Asymptotic synchronisation (2) means to bring all agents on the same trajectory

ys(t) ∈ Ys.

2.2 Networked controller

The generalised synchronisation error of the i-th agent is defined as a linear combi-

nation of the output differences

ei(t) = −
N∑

j=1,j 6=i

lij(yi(t)− yj(t)) = −
N∑

j=1

lijyj(t), i = 1, 2, ..., N (5)

with

lii = −
N∑

j=1,j 6=i

lij .

It can be written in matrix-vector form as

e(t) = −Ly(t) (6)
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with the vectors

e(t) =








e1(t)
e2(t)

...

eN(t)








and y(t) =








y1(t)
y2(t)

...

yN(t)








and the Laplacian matrix L = (lij).
Each local controller Ci is a dynamical system with an nri-dimensional internal

state xri(t):

Ci :

{
ẋri(t) = Arixri(t) + briei(t), xri(0) = xri0

ui(t) = kT
rixri(t) + keiei(t).

(7)

It feeds the synchronisation error ei(t) locally back to the input ui(t) of the corre-

sponding agent.

In summary, the networked controller is composed of the local controllers Ci of

the agents and of the communication network described by the Laplacian matrix L

(cf. Fig. 1). Static networked controllers do not include local controllers and the

relation

Ci : ui(t) = ei(t)

replaces eqn. (7).

2.3 Extended agents

If the agent model (3) is combined with the local controller (7), the model of the

series connection of both components is obtained
(

ẋi(t)

ẋri(t)

)

=

(

Ai bik
T
ri

O Ari

)

︸ ︷︷ ︸

A0i

(

xi(t)

xri(t)

)

︸ ︷︷ ︸

x0i(t)

+

(

bikei

bri

)

︸ ︷︷ ︸

b0i

ei(t)

yi(t) = (cTi 0
T)

︸ ︷︷ ︸

cT0i

(

xi(t)

xri(t)

)

and abbreviated as

Σ0i :

{
ẋ0i(t) = A0ix0i(t) + b0iei(t), x0i(0) = x̄i0

yi(t) = cT0ix0i(t).
(8)

Σi0 is called the extended agent. The initial state is given by

x0i(0) =

(

xi(0)

xri(0)

)

=

(

xi0

xri0

)

and denoted by x̄i0.
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Assumption 1 It is assumed that all extended agents are completely controllable

by the input ei(t) and completely observable through the output yi(t).

2.4 Overall system

The overall system consists of N extended agents (8) that are coupled by eqn. (6).

The state of the overall system is given by the concatenation of the states of the

extended agents:

x(t) =








x01(t)
x02(t)

...

x0N (t)








.

The model of the overall system Σ is obtained by combining eqns. (6) and (8):

Overall system Σ :

{

ẋ(t) = Ax(t), x(0) = x0

y(t) = Cx(t)
(9)

with

A =





A01
A02 . . .

A0N



−





b01
b02 . . .

b0N



L





cT01
cT02 . . .

cT0N





C =





cT01
cT02 . . .

cT0N



 . (10)

3 Synchronisation condition

3.1 Representation of the synchronisation error

This section repeats a necessary and sufficient condition for the asymptotic synchro-

nisation of a set of agents with individual dynamics given in [1] in Theorem 4.5.

Consider the extended agents Σ0i described by eqn. (8) and assume that these

agents have a nonempty intersection Σs described by eqn. (4). According to Theo-

rem 4.4 in [1] there exist transformation matrices T i such that the models of the
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extended agents can be decomposed into the virtual reference system and some re-

maining system:

Σ0i :







˙̃xi(t) =

(

As Aqi

O Api

)

︸ ︷︷ ︸

Ã0i

x̃i(t) +

(

bqi

bpi

)

︸ ︷︷ ︸

b̃0i

ui(t), x̃i(0) = x̃i0

yi(t) = (cTs cTpi)
︸ ︷︷ ︸

c̃T0i

x̃i(t), i = 1, 2, ..., N

(11)

with the state

x̃i(t) = T−1
i x0i(t) =

(

xqi(t)

xpi(t)

)

(12)

and with

Ã0i = T −1
i A0iT i, b̃0i = T −1

i b0i, c̃T0i = cT0iT i, x̃i0 = T −1
i x̄i0

The required synchronisation condition is obtained by, first, considering the diffe-

rences

eyi(t) = yi(t)− y1(t), i = 2, 3, ..., N

between the agent outputs and finding a representation of the vector

e∆(t) = (ey2(t), ey3(t), ..., eyN(t))
T (13)

in terms of the agent models and, second, by testing the stability of this representa-

tion.

The following lemma (Lemma 4.7 in [1]) gives a model for the synchronisation

error (13).

Lemma 1 (Representation of the output differences)

Assume that the extended agents Σ0i, (i = 1, 2, ..., N) have the form (11) and pos-

sess a nonempty maximum intersection

Σs =
(
∩N
i=1Σ0i

)∗
= (As, c

T
s ).

Then the output differences (13) that appear in the overall system Σ described by

eqn. (9) is represented by

Σ∆ :

{
˙̆x(t) = Ăx̆(t), x̆(0) = x̆0

e∆(t) = C̆x̆(t)
(14)
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with

Ă =








Ap1

−T 2Âq1 A2

...
. . .

−TNÂq1 AN







−







bp1 0 ... 0

−T 2b̂q1 b2...
. . .

−TN b̂q1 bN







L






cTp1
cT2 . . .

cTN






b̂q1 =

(

bq1

0

)

, Âq1 =

(

Aq1

O

)

, C̆ =





−cTp1 cT2...
. . .

−cTp1 cTN



 . (15)

The lemma is proved in [1], Appendix 4B.

3.2 Synchronisation criterion

As a by-product, the proof of Lemma 1 in [1] makes obvious that the system (14)

may have any initial state x̆0. Furthermore, as the extended agents are assumed to be

completely observable, the pairs (Ap1, c
T
p1) and (A0i, c

T
0i), (i = 2, ..., N) are com-

pletely observable. As the matrix Ă defined in eqn. (15) can be interpreted as the

system matrix of an output feedback system and as output feedback cannot change

the observability property of a system, the pair (Ă, C̆) is completely observable.

Therefore, the synchronisation error e∆(t) vanishes if and only if the matrix Ă is

Hurwitz.

This fact together with the Internal-Reference Principle (Theorem 4.4 in [1])

leads to the following synchronisation condition (proved as Theorem 4.5 in [1]).

Theorem 1 (Synchronisation condition)

A set of extended agents Σ0i described by eqn. (8) is asymptotically synchroni-

sed by the networked controller (6) if and only if the following conditions are

satisfied:

1. There exists a nonempty intersection

Σs = ∩N
i=1Σ0i 6= ∅ (16)

of all extended agents Σ0i = (A0i, b0i, c
T
0i).

2. The matrix Ă defined in eqn. (15) is Hurwitz.
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3.3 Initial state for complete synchronisation

The proof of Lemma 1 also says for which initial states x0i(0) of the extended

agents all agent follow the same trajectory ys(t) for all t ≥ 0 as claimed in eqn. (1):

x̌0 = 0.

The transformation

x̌0 =








xp10

T 2x̃20

...

TN x̃N0








leads to the initial states

xp10 = 0

x̃i0 = 0, i = 2, 3, ..., N

of the transformed extended agents (11) and to the initial states

x̄i0 = x̄s
i0 with x̄s

i0 = T i

(

xs0

0

)

for some xs0 ∈ R
ns (17)

of the original extended agents (8). That is, all agents have to start in an initial state

with the same q-component and vanishing p-component:

xq10 = xq20 = ... = xqN0 = xs0 (18)

xp10 = xp20 = ... = xpN0 = 0.

Then all agents are completely synchronised at the trajectory ys(t) that is fixed by

the q-component:

ẋs(t) = Asxs(t), xs(0) = xq10

ys(t) = cTs xs(t).
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4 First method

4.1 Problem statement

Equation (17) gives the initial states x̄s
i0, (i = 1, 2, ..., N) for which all agents follow

the synchronous trajectory

ys(t) = cTs e
Astxs0

and, hence, satisfy the requirement (1). This section considers the overall system

for other initial states

x̄i0 6= x̄s
i0

and shows how to determine the initial state xs0 of the virtual reference system Σs

to generate the synchronous trajectory ys(t) to which all agents are asymptotically

synchronised if the conditions of Theorem 1 are satisfied.

The following investigations are made for extended agent Σ0i given in eqn. (8)

under the following assumption:

Assumption 2 The extended agents (8) have diagonalisable matrices A0i, (i =
1, 2, ..., N).

As a consequence, the virtual reference system has a diagonalisable matrix As.

4.2 Determination of the initial state of the virtual reference

system as a linear combination of the initial agent states

Due to Assumption 2, there exist transformation matrices T i that bring the agent

models into the form

Σ0i :

{
˙̃xi(t) = Ã0ix̃i(t) + b̃0iei(t), x̃i(0) = x̃i0

yi(t) = c̃T0ix̃i(t)
(19)

with the matrices

Ã0i = T−1
i A0iT i =

(

As O

O Api

)

(20)

b̃0i = T−1
i b0i =

(

bqi

bpi

)

(21)

c̃T0i = cT0iT i = (cTs cTpi) (22)

and the state

x̃i =

(

xqi(t)

xpi(t)

)

= T−1
i x̄0i, x̃i0 =

(

xqi0

xpi0

)

= T −1
i x̄i0. (23)
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In contrast to eqn. (11), the matrices Ã0i are block-diagonal. Therefore, the ma-

trix Ă to be considered in the synchronisation test of Theorem 1 simplifies to

Ă =








Ap1

A2

. . .

AN







−






bp1 0 ... 0

−T 2b̂q1 b2...
. . .

−TN b̂q1 bN




L





cTp1
cT2 . . .

cTN





(24)

with

b̂q1 =

(

bq1

0

)

.

The eigenvector matrix of As is denoted by V s. The diagonal matrix

T bi =





ti1
ti2 . . .

tins





is introduced that satisfies the relation

T biV
−1
s bqi = 11 , i = 1, 2, ..., N. (25)

Furthermore, the matrix

T b =

N∑

i=1

ŵiT bi (26)

is defined.

The following theorem states the first main result of this report.

Theorem 2 (Initial state of the virtual reference system)

Consider extended agents (8) that satisfy Assumption 2 and assume that these

extended agents together with the networked controller (6) satisfy the conditions

of Theorem 1. Then the synchronous trajectory ys(t) is generated by the virtual

reference system (4) for the initial state

xs0 = V sT
−1
b

N∑

i=1

ŵi T biV
−1
s xqi0, (27)

where wT = (ŵ1 ŵ2 ... ŵN) is the normalised left eigenvector of the Laplacian

matrix L belonging to the vanishing eigenvalue λ1{L} = 0. The diagonal ma-

trices T bi are obtained from eqn. (25), the matrix T b from eqn. (26) and xqi0,

(i = 1, 2, ..., N) are part of the initial states (23) of the transformed agents (19).
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Proof. For the upper part of the state vector x̃i(t), eqn. (19) yields

ẋqi(t) = Asxqi(t) + bqiei(t), xqi(0) = xqi0.

As the matrix As is assumed to be diagonalisable, the state transformations

x̂qi(t) = V −1
s xqi(t), i = 1, 2, ..., N

lead to the models

˙̂xqi(t) = Âsx̂qi(t) + V −1
s bqiei(t), x̂qi(0) = V −1

s xqi0

(i = 1, 2, ..., N) with

Âs =





λs1
λs2

. . .
λsns



 .

As the extended agents are assumed to be completely controllable, the pairs (As, bqi),

(i = 1, 2, ..., N) and, hence, the pairs (Âs,V
−1
s bqi) are controllable. Consequently, the

vectors V −1
s bqi do not have any vanishing element and regular diagonal matrices T bi,

(i = 1, 2, ..., N) exist which satisfy eqn. (25).

Now, the state

x̂s(t) = T−1
b

N∑

i=1

ŵi T bi x̂qi(t) (28)

is introduced, for which the differential equation

˙̂xs(t) = T−1
b

N∑

i=1

ŵi T bi
˙̂xqi(t)

= T−1
b

N∑

i=1

ŵi T biÂsx̂qi(t) + T−1
b

N∑

i=1

ŵi T biV
−1
s bqi

︸ ︷︷ ︸

11

N∑

j=1

(−lij)yj(t)

= ÂsT
−1
b

N∑

i=1

ŵi T bi x̂qi(t)− T−1
b

N∑

j=1

11

N∑

i=1

ŵilij

︸ ︷︷ ︸

= 0

yj(t)

= Âsx̂s(t)

is obtained, because

ŵTL = 0
T

holds. Note that Âs, T
−1
b and T bi are diagonal matrices and the synchronisation er-

ror ei(t) is given by eqn. (5). A back-transformation

xs(t) = V sx̂s(t)

yields eqn. (4) with the initial state (27).
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The next step is to show that the trajectory generated by the model (4) is the synchro-

nous trajectory to which all outputs yi(t) converge. The output equation







y1(t)
y2(t)

...

yN (t)








=






c̃T01
c̃T02 . . .

c̃T0N













x̃1(t)
x̃2(t)

...

x̃N (t)








of the overall system (9), which are represented in terms of the transformed states used in

eqn. (19), can be re-written in terms of the state vectors

x̂i(t) = x̃i(t)−
(

xq1(t)

0

)

=

(

xqi(t)− xq1(t)

xpi(t)

)

, i = 2, 3, ..., N

as 






y1(t)
y2(t)

...

yN (t)








=






cTp1
c̃T02 . . .

c̃T0N













xp1(t)
x̃2(t)

...

x̃N (t)








+








cTs
cTs
...

cTs








xq1(t).

Under the conditions of Theorem 1 the model (14) is stable, which implies

lim
t→∞

‖xp1(t)‖ = 0

and

lim
t→∞

‖x̃i(t)‖ = 0, i = 2, 3, ..., N

and consequently

lim
t→∞

‖xpi(t)− xp1(t)‖ = 0, i = 2, 3, ..., N

and

lim
t→∞

‖yi(t)− cTs xq1(t)‖ = 0 i = 1, 2, ..., N.

It remains to show that

lim
t→∞

‖xq1(t)− xs(t)‖ = 0 (29)

is valid. Equation (28) implies

lim
t→∞

‖x̂q1(t)− x̂s(t)‖ = lim
t→∞

‖x̂q1(t)− T−1
b

N∑

i=1

ŵi T bi x̂qi(t)‖

= lim
t→∞

‖T−1
b

N∑

i=1

ŵi T bi x̂q1(t)− T−1
b

N∑

i=1

ŵi T bi x̂qi(t)‖

= lim
t→∞

‖T−1
b

N∑

i=1

ŵi T bi (x̂q1(t)− x̂qi(t))‖

= 0

and

lim
t→∞

‖xq1(t)− xs(t)‖ = lim
t→∞

‖V −1
s (x̂q1(t)− x̂s(t))‖ = 0

which proves the theorem. 2
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Algorithm 1 Determine the initial state xs0 of the virtual reference system

Given: Σi0, (i = 1, 2, ..., N) of the form (8) satisfying Assumption 2

1. Determine the intersection Σs = (As, c
T
s ) of the extended

agents. This step includes to find the transformation matri-

ces T i, (i = 1, 2, ..., N) and the decomposition of the extended

agents as in eqns. (19) – (23).

2. Check the synchronisation condition: Ă given in eqn. (24) has

to be Hurwitz.

3. Determine the matrices T bi and T b according to eqns. (25) and

(26) and the normalised left eigenvector ŵT of the Laplacian

matrix L.

4. Determine the required initial state (27) .

Result: Initial state xs0 of the virtual reference system.

In summary, the initial state xs0 can be determined by Algorithm 1.

4.3 Interpretation of the result

Equation (27) shows that the initial state xs0 of the virtual reference system is a

linear combination of the initial states x̄i0 of the extended agents. It generalises the

proposition of eqn. (18) that xs0 only depends upon the q-component of the agent

states.

To find a direct relation between xs0 and x̄i0, (i = 1, 2, ..., N), use eqn. (23)

to get an expression for xqi0, which is a component of the transformed initial

state T−1
i x̄i0 of the extended agent Σ0i. If the transformation matrix is decomposed

as

T−1
i =

(

T u
i

T l
i

)

into its upper part T u
i and its lower part T l

i, the initial state xqi0 used in eqn. (27) is

represented as

xqi0 = T u
i x̄i0.

Then eqn. (27) reads as

xs0 = V sT
−1
b

N∑

i=1

ŵi T biV
−1
s T u

i x̄i0.
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This representation refers to the weighted sum
∑N

i=1 ŵiP ix̄i0 of the initial states x̄i0,

which are transformed by the matrix P i = T biV
−1
s T u

i given by the extended

agents. This sum is finally transformed by V sT
−1
b to get xs0:

xs0 = V sT
−1
b

N∑

i=1

ŵi P ix̄i0. (30)

Due to the individual properties of the agents, the initial states x̄i0 of the exten-

ded agents have diverse effects on the initial state xs0 of the virtual reference sys-

tem. The influence of the communication structure is shown by the weightings ŵi,

(i = 1, 2, ..., N), which are the elements of the left eigenvector of the Laplacian

matrix L for the vanishing eigenvalue.

If the transformed extended agents (19) have the same vectors bqi = bq, (i =
1, 2, ..., N) the matrices T bi are the same, the relation T b = T bi holds and these

matrices disappear from eqn. (27):

xs0 = V s

N∑

i=1

ŵiV
−1
s xqi0

=
N∑

i=1

ŵixqi0

=

N∑

i=1

ŵiT
u
i x̄i0.

xs0 is the weighted sum of the components xqi0 of the initial states x̄i0 of the agents.

This relation is similar to the corresponding relation (4.34) on p. 143 that is valid

for identical agents:

xs0 =

N∑

i=1

ŵix̄i0.

4.4 Example: Synchronisation of three oscillators with different

time constants

The following results extend Example 4.7 in [1].

Models. Three harmonic oscillators have first-order time lag elements with the time

constants T1 = 1, T2 = 2 and T3 = 3. The agent model (3) holds with

Ai =






0 3 1
−3 0 1

0 0 − 1
Ti




 , bi =





0
0
1
Ti



 , ci =
(
1 10 0

)
, i = 1, 2, 3
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and with the initial states

x10 =





−1
1
0



 , x20 =





1
1
0



 , x30 =





0
0
1



 .

The oscillators should be synchronised by a static networked controller, which

implies that Σ0i = Pi holds. The structure of the matrix above reveals that Σ0i,

(i = 1, 2, 3) have already the decomposed form (11) with

Api = − 1

Ti

, bpi =
1

Ti

, Âqi =





1
1
0



 , b̂qi =





0
0
0



 , i = 1, 2, 3

for the trivial transformation matrices T i = I . A maximum intersection (16) has

the state-space model (4) with the parameters

As =

(

0 3

−3 0

)

, cTs = (1 10). (31)

Hence, the agents satisfy the Internal-Reference Principle (16).

All-to-all couplings are described by the normalised Laplacian matrix

L̂ =





1 −0.5 −0.5
−0.5 1 −0.5
−0.5 −0.5 1



 (32)

which together with the gain k = 0.1 leads to the Laplacian matrix L = kL̂ used in

the networked controller

u(t) = −Ly(t).

The overall system is described by eqn. (9) with the matrices

A =

(

A1
A2

A3

)

−
(

b1
b2

b3

)

L

(

cT1
cT2

cT3

)

=


















0 3 1 0 0 0 0 0 0
−3 0 1 0 0 0 0 0 0
−0.1 −1 −1 0.05 0.5 0 0.05 0.5 0

0 0 0 0 3 1 0 0 0
0 0 0 −3 0 1 0 0 0

0.025 0.25 0 −0.05 −0.5 −0.5 0.025 0.25 0

0 0 0 0 0 0 0 3 1
0 0 0 0 0 0 −3 0 1

0.0167 0.1667 0 0.0167 0.1667 0 −0.033 −0.333 −0.333


















C =





1 10 0 0 0 0 0 0 0
0 0 0 1 10 0 0 0 0
0 0 0 0 0 0 1 10 0



 .
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The matrix A has, among others, the eigenvalues ±j 3, which originate from the

common dynamics.

Synchronous trajectory. To determine the initial state xs0 of the virtual reference

system (4) with the parameters (31) according to Algorithm 1 the oscillators have

to be transformed into the form (19) with the matrices (20) – (22). The matrix

Ai =





0 ω 1
−ω 0 1

0 0 − 1
Ti





is transformed with the matrix

T i =





1 0 si
0 1 ti

0 0 1



 with si =
aii + ω

a2ii + ω2
, ti =

aii − ω

a2ii + ω2
, aii = − 1

Ti

to get

T−1
i AiT i =





0 ω 0
−ω 0 0

0 0 − 1
Ti



 , T −1
i bi =





− si
Ti

− ti
Ti

1
Ti



 , cTi T i = (1 10 si+10ti)

all of which have the form required in eqns. (20) and (21). Equation (23) leads to

the transformed initial state

xqi0 =

(

xi01 − sixi03

xi02 − tixi03

)

for xi0 = (xi01, xi02, xi03)
T.

For ω = 3 one gets the following model elements for the first oscillator and

similar numerical results for the other two oscillators:

T 1 =





1 0 −0.0642
0 1 −0.1193
0 0 1



 , bq1 =

(

0.6422

1.1927

)

, b̂q1 =





0.6422
1.1927

0





Ap1 = −10, bp1 = 10, cTp1 = 0.

The matrix Ă given in eqn. (24)

Ă =













−8.7431 0.5 5 0 0.5 5 0

−0.0807 −0.0321 2.6789 1 −0.0321 −0.3211 0
−0.1499 −3.0596 −0.5963 1 −0.0596 −0.5963 0
−0.3142 −0.5 −5 −5 0.2500 2.5 0

−0.0807 −0.0321 −0.3211 0 −0.0321 2.6789 1
−0.1499 −0.0596 −0.5963 0 −3.0596 −0.5963 1
−0.0209 0.0167 0.1667 0 −0.0333 −0.3333 −0.3333
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is Hurwitz, which means that the three oscillators are synchronised by the controller

given.

The virtual reference system gets its canonical normal form by applying the

transformation matrix

V s =
1√
2

(

1 1

j −j

)

with V −1
s =

1√
2

(

1 −j

1 j

)

,

with the results

V −1
s bqi =

1√
2

(

1 −j

1 j

)(
− si

Ti

− ti
Ti

)

=
1√
2

(
− si

Ti

+ j ti
Ti

− si
Ti

− j ti
Ti

)

and

T bi =





√
2Ti

−si+jti
0

0
√
2Ti

−si−jti



 .

With the feedback gains chosen above, the Laplacian matrix is

L =





0.1 −0.05 −0.05
−0.05 0.1 −0.05
−0.05 −0.05 0.1





with the normalised left eigenvector

wT = 11
T(L− 1111

T)−1 = (0.333, 0.333, 0.333).

With these results the following model elements for the first oscillator are obtai-

ned:

V s =

(

0.7071 0.7071

j0.7071 −j0.7071

)

, V −1
s bq1 =

(

0.4541− j0.8433

0.4541 + j0.8433

)

T b1 =

(

0.4950 + j0.9192 0

0 0.4950− j0.9192

)

T b =

(

−1.6263 + j3.0406 0

0 −1.6263− j3.0406

)

.

The initial states of the extended agents are obtained from the state transforma-

tion (23):

xq10 =

(

−1

1

)

, xq20 =

(

−1

1

)

, xq30 =

(

−0.2927

0.3659

)

.
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Finally, eqn. (27) leads to the required result:

xs0 =

(

−0.3255

0.4926

)

.

xs0 can be stated as the linear combination (30) of the initial states of the extended

agents as

xs0 =

(

−0.0967− j0.1808 −0.0967 + j0.1808

0.1808− j0.0967 0.1808 + j0.0967

)

·
[

0.3333

(
0.3500 + j0.6500 0.6500− j0.3500 0.1
0.3500− j0.6500 0.6500 + j0.3500 0.1

)

x10

+ 0.3333

(
0.3500 + j0.6500 0.6500− j0.3500 0.1735− j0.0441
0.3500− j0.6500 0.6500 + j0.3500 0.1735 + j0.0441

)

x20

+ 0.3333

(
0.3500 + j0.6500 0.6500− j0.3500 0.1354− j0.3183
0.3500− j0.6500 0.6500 + j0.3500 0.1354 + j0.3183

)

x30

]

=

(

−0.3255

0.4926

)

.

Fig. 2: Synchronous trajectory (below) and synchronised

behaviour of three oscillators (above)

Figure 2 shows how the oscillators synchronise when starting in different initial

states. The lower part depicts the synchronous trajectory that is generated by the

virtual reference system for the initial state xs0 given above.
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5 Second method

5.1 Problem statement

The preceding section has elaborated the representation (27) of the initial state xs0

of the virtual reference system in terms of the initial states of the agents. The result

shows a direct relation between xs0, properties of the Laplacian matrix L of the

communication network and properties of the extended agents. In particular, it was

shown that xs0 is a linear combination of x̄i0, (i = 1, 2, ..., N).
However, these results use Assumption 2, which simplifies the representation of

the xq-component of the agent states (12) due to the block-diagonal matrix Ã0i in

eqn. (20). Non-diagonalisable matrices occur, in particular, in the synchronisation

of vehicles or robots that are represented by integrators or double-integrators. This

section derives explicit relations for xs0 in dependence upon x̄i0 for such systems.

The next section demonstrates the main idea by investigating two coupled agents.

Later on, the results are extended to overall systems with N agents.

5.2 Analysis of two coupled agents with integrator dynamics

Consider the extended agents

Σ01 :







ẋ1(t) =





0 1 0
0 − 1

T1

1
T1

0 0 0



x1(t) +





0
a
T1

1



 e1(t), x1(0) = x10

y1(t) = (1 0 0)x1(t)
(33)

and

Σ02 :







ẋ2(t) =

(
0 1

0 − 1
T2

)

x2(t) +

(
0

1
T2

)

e2(t), x2(0) = x20

y2(t) = (1 0)x2(t).

(34)

Both extended agents include an integrator together with a first-order dynamics as

an agent Pi to be synchronised. Σ01 results from the extension of this agent by a

second integrator, whereas Σ02 = P2 holds.

The first integrator in eqns. (33) and (34) represents the common dynamics

of Σ01 and Σ02, which is represented by a first-order virtual reference system (4)

with the scalar parameters

As = 0 and cTs = 1.

Σ01 does not satisfy Assumption 2. Both extended agents have the structure required

in eqn. (11). For t → ∞ the integrator agents reach the consensus state xs0, which

should be determined.
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Overall system. With the networked controller represented by
(

e1(t)

e2(t)

)

= −kL

(

y1(t)

y2(t)

)

with L =

(

1 −1

−1 1

)

the overall system has the model (9) with the matrices

A =









0 1 0 0 0
0 − 1

T1

1
T1

0 0

0 0 0 0 0

0 0 0 0 1
0 0 0 0 − 1

T2









−









0 0
a
T1

0

1 0

0 0
0 1

T2









k

(

1 −1

−1 1

)(
1 0 0 0 0
0 0 0 1 0

)

=









0 1 0 0 0
−ak

T1

− 1
T1

1
T1

ak
T1

0

−k 0 0 k 0

0 0 0 0 1
k
T2

0 0 − k
T2

− 1
T2









C =

(
1 0 0 0 0
0 0 0 1 0

)

.

With the notation of the agent states of eqn. (12) the model is structured as follows:

Σ :















ẋq1(t)

ẋp11(t)
ẋp12(t)
ẋq2(t)
ẋp2(t)









=









0 1 0 0 0

−ak
T1

− 1
T1

1
T1

ak
T1

0

−k 0 0 k 0
0 0 0 0 1
k
T2

0 0 − k
T2

− 1
T2

















xq1(t)

xp11(t)
xp12(t)
xq2(t)
xp2(t)









︸ ︷︷ ︸

x(t)

(

y1(t)

y2(t)

)

=

(
1 0 0 0 0
0 0 0 1 0

)

.









xq1(t)

xp11(t)
xp12(t)
xq2(t)
xp2(t)









.

Consequently, the initial states x10 and x20 are composed of the following elements:

x10 =





xq10

xp110

xp120



 and x20 =

(
xq20

xp20

)

.
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Analysis of the overall system. The idea of the following analysis, which should

end up with the required representation of the initial state xs0 of the virtual reference

system, is to isolate the first component of the state vector as the state variable of Σs.

The state transformation

x̂(t) =









1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
−1 0 0 1 0
0 0 0 0 1









︸ ︷︷ ︸

T̂
−1

x(t) with T̂ =









1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
1 0 0 1 0
0 0 0 0 1









introduces as the new fourth component the difference x̂4(t) = xq2(t)− xq1(t) and

leads to the representation of the overall system by

Σ :







˙̂x(t) =









0 1 0 0 0

0 − 1
T1

1
T1

ak
T1

0

0 0 0 k 0
0 −1 0 0 1
0 0 0 − k

T2

− 1
T2









x̂(t)

y(t) =

(
1 0 0 0 0
1 0 0 1 0

)

x̂(t)

with a zero column in the matrix and the initial state

x̂(0) =









xq10

xp110

xp120

xq20 − xq10

xp20









.

The matrix is abbreviated as

Â = T̂
−1
AT̂ =

(
0 aT

12

0 Â22

)

with Â22 =







− 1
T1

1
T1

ak
T1

0

0 0 k 0
−1 0 0 1
0 0 − k

T2

− 1
T2







and aT
12 = (1 0 0 0).

The matrix A22 has to be Hurwitz for the overall system to be synchronised. For

T1 = T2 = T and

a > T − 1

this condition is satisfied, because for these parameters the characteristic polynomi-

al can be decomposed as

det(λI −A22) =

(

λ+
1

T

)(

λ3 +
1

T
λ2 +

k

T
(a+ 1)λ+

k

T

)
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and the Routh-Hurwitz criterion leads to the inequalities above.

The next step uses another state transformation

x̌ =

(

1 −aT
12Â

−1

22

0 I

)

︸ ︷︷ ︸

Ť
−1

x̂(t) with Ť =

(

1 aT
12Â

−1

22

0 I

)

aT
12Â

−1

22 = (0 − 1 − 1 − T2)

to give the matrix a zero row in the first line

Σ :







˙̌x(t) =









0 0 0 0 0

0 − 1
T1

1
T1

ak
T1

0

0 0 0 k 0
0 −1 0 0 1
0 0 0 − k

T2

− 1
T2









x̌(t)

y(t) =

(
1 0 −1 −1 −T2

1 0 −1 0 −T2

)

x̌(t).

The initial state

x̌(0) =

(

1 aT
12Â

−1

22

0 I

)

x̂(0)

has the first component

x̌1(0) = xq10 + xp120 + (xq20 − xq10) + T2xp20

= xp120 + xq20 + T2xp20. (35)

With the decomposition of the state vector as

x̌(t) =

(

xq1(t)

x̌2(t)

)

the model implies

lim
t→∞

‖x̌2(t)‖ = 0

lim
t→∞

y1(t) = x̌1(0).

Hence, the first component (35) of the initial state of the last model is the required

initial state xs0 of the first-order virtual reference system:

xs0 = x13(0) + x21(0) + T2x22(0). (36)

Figure 3 shows the behaviour of the two agents with the following parameters

T1 = 1, T2 = 0.5, a = 2, k = 0.2
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Fig. 3: Behaviour of two agents with integrator dynamics

and the initial states

x10 =





0
0
1



 and x20 =

(

0

1

)

.

The consensus value is obtained from eqn. (36):

xs0 = 1 + 0 + 0.5 · 1 = 1.5.

5.3 Extension of the method for N agents

A generalisation of the result of the preceding section is obtained by using the state

transformations and the results of the proof of Lemma 4.7 on pp. 263–265 in [1].

The extended agents have models of the form (33) and (34) both of which can be

generalised as

Σ0i :







ẋi(t) =

(
0 aT

qi

0 Api

)

︸ ︷︷ ︸

Ai

xi(t) +

(
0

bpi

)

︸ ︷︷ ︸

bi

ei(t), xi(0) = xi0

yi(t) =
(
1 0

T
)

︸ ︷︷ ︸

cTi

xi(t)

(37)

with

aT
qi = (1 0

T)

and the state vector

xi(t) =

(

xqi(t)

xpi(t)

)

.
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The state transformation (4.250)

x̂i(t) = xi(t)−
(

xq1(t)

0

)

=

(

xqi(t)− xq1(t)

xpi(t)

)

, i = 2, 3, ..., N (38)

introduces the new state vectors x̂i(t), for which, after a lengthy calculation, the

model (4.254) is obtained
˙̂x(t) = Âx̂(t)

with

x̂(t) =








xp1(t)
x̂2(t)

...

x̂N(t)








(39)

Â =








Ap1

−Âq1 A2

...
. . .

−Âq1 AN







−






bp1
b2 . . .

bN




L





0
T

c̃T2 . . .
c̃TN





(40)

and

Âq1 =

(

aT
q1

O

)

.

In the matrix Âq1 that appears in Â several times, the number of zero rows depends

upon the dynamical order of the i–th agent. The matrix Â is Hurwitz if and only if

the synchronisation condition of Theorem 1 is satisfied.

To get the agent output y1(t), the state variable xq1(t) has to be added, which

follows the differential equation

ẋq1(t) = aT
q1xp1(t)

obtained from eqn. (37). The extended model is

Σ :







(
ẋq1(t)

˙̂x(t)

)

=

(
0 ãT

q1

0 Â

)(

xq1(t)

x̂(t)

)

y1(t) = xq1(t)

with

ãT
q1 = (aT

q1 0
T).

The transformation

x̌(t) =

(

1 −ãT
q1Â

−1

0 I

)

︸ ︷︷ ︸

Ť
−1

(

xq1(t)

x̂(t)

)

with Ť =

(

1 ãT
q1Â

−1

0 I

)
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yields the new representation

Σ :







˙̌x(t) =

(
0 0

T

0 Â

)

x̌(t)

y1(t) = (1 ãT
q1Â

−1
) x̌(t)

with the initial state

x̌(0) =

(

1 −ãT
q1Â

−1

0 I

)(

xq1(0)

x̂(0)

)

. (41)

Since Â is Hurwitz, the relation

lim
t→∞

y1(t) = x̌10

holds, which means that xs0 = x̌10 is the required result. To find x̌10 in a better

representation, eqn. (38) is used to get

x̂i(0) = xi0 −
(

xq1(0)

0

)

.

Hence, from eqn. (39) the relation

x̂(0) =














xp1(0)

x20 −
(

xq1(0)

0

)

...

xN0 −
(

xq1(0)

0

)














and from eqn. (41) the final result

xs0 = (1 − ãT
q1Â

−1
)














x10

x20 −
(

xq1(0)

0

)

...

xN0 −
(

xq1(0)

0

)














(42)

are obtained. The following theorem states the second main result of this report.
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Algorithm 2 Determine the initial state xs0 of the virtual reference system

Given: Σi0, (i = 1, 2, ..., N) of the form (37)

1. Determine the matrix Â according to eqn. (40).

2. Check the synchronisation condition: Â has to be Hurwitz.

3. Determine the initial state row vector ãT
q1Â

−1

4. Determine the required initial state (42) .

Result: Initial state xs0 of the virtual reference system.

Theorem 3 (Initial state of the virtual reference system)

Assume that the extended agents (37) have integrator or double-integrator dyna-

mics as in eqns. (33) and (34). If the overall systems satisfies the synchronisation

condition of Theorem 1, the synchronous trajectory ys(t) = xs0 is constant and

generated for the initial state (42).

In summary, the initial state xs0 can be determined by Algorithm 2.

5.4 Example: Synchronisation of four integrator or double-integrator

agents

Consider a network of four integrator agents with Σ01 and Σ04 having a model (33)

and Σ02 and Σ03 the model (34). The following parameters are used:

T1 = 1, a1 = 3, T2 = 0.7, T3 = 0.8, T4 = 1.2, a4 = 4.4.

The networked controller is described by the parameters

L =







2 −1 0 −1
−1 1 0 0
−1 0 2 −1
−1 −1 −1 3







and k = 0.9.

For the initial states

x10 =





1
0
1



 , x20 =

(

0

1

)

, x30 =

(

0

−1

)

, x40 =





0
1
−1







26 J. LUNZE: How to determine the initial state of the virtual reference system

Fig. 4: Behaviour of two agents with integrator dynamics

Fig. 4 depicts the behaviour of the four networked agents.

The initial state xs0 of the virtual reference system is obtained by Algorithm 2.

The (9× 9)–matrix Â is asymptotically stable. The result

xs0 = 0.8875

is marked by the red line in Fig. 4.
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